Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Astrobiology ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38669050

RESUMO

Solar radiation that arrives on the surface of Mars interacts with organic molecules present in the soil. The radiation can degrade or transform the organic matter and make the search for biosignatures on the planet's surface difficult. Therefore, samples to be analyzed by instruments on board Mars probes for molecular content should be selectively chosen to have the highest organic preservation content. To support the identification of organic molecules on Mars, the behavior under UV irradiation of two organic compounds, undecanoic acid and L-phenylalanine, in the presence of vermiculite and two chloride salts, NaCl and MgCl, was studied. The degradation of the molecule's bands was monitored through IR spectroscopy. Our results show that, while vermiculite acts as a photoprotective mineral with L-phenylalanine, it catalyzes the photodegradation of undecanoic acid molecules. On the other hand, both chloride salts studied decreased the degradation of both organic species acting as photoprotectors. While these results do not allow us to conclude on the preservation capabilities of vermiculite, they show that places where chloride salts are present could be good candidates for in situ analytic experiments on Mars due to their organic preservation capacity under UV radiation.

2.
J Environ Manage ; 356: 120747, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38537473

RESUMO

Increasing amounts of solid waste and sludge have created many environmental management problems. Pyrolysis can effectively reduce the volume of solid waste and sludge, but there is still the problem of heavy metal contamination, which limits the application of pyrolysis in environmental management. The intercalated-exfoliated modified vermiculite (IEMV) by intercalators of sodium dodecylbenzene sulfonate, hexadecyltrimethylammonium bromide and octadecyltrimethylammonium bromide were used to control the release of Cd, Cr, Cu, Zn and Pb during pyrolysis process of sludge or solid waste. The retention of heavy metals in sludge was generally better than that in solid waste. The IEMV by octadecyltrimethylammonium bromide as the intercalator calcined 800 °C (STAB-800) was the best additive for heavy metal retention, and the retention of Cr, Cu and Zn was significantly better than that of Pb and Cd. Cr, Cu, Zn and Pb were at low risk, while Cd had considerable risk under certain circumstances. New models were proposed to comprehensively evaluate the results of the risk and forms of heavy metals, and the increasing temperature was beneficial in reducing the hazards of heavy metals by the addition of STAB-800. The reaction mechanism of heavy metals with vermiculite was revealed by simulation of reaction sites, Fukui Function and Frontier Molecular Orbital. Thermal activation-intercalated-exfoliated modified vermiculite (T-IEMV) is more reactive and had more active sites for heavy metals. Mg atoms and outermost O atoms are the main atoms for T-IEMV to react with heavy metals. The Cr, Cu and Zn have better adsorption capacity by T-IEMV than Pb and Cd. This study provides a new insight into managing solid waste and sludge and controlling heavy metal environmental pollution.


Assuntos
Alcanos , Silicatos de Alumínio , Metais Pesados , Compostos de Amônio Quaternário , Esgotos , Esgotos/química , Resíduos Sólidos , Pirólise , Cádmio , Chumbo , Metais Pesados/química
3.
Microorganisms ; 12(3)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38543634

RESUMO

Soilless cultivation of potatoes often utilizes organic coconut peat and inorganic vermiculite as growing substrates. The unique microbial communities and physicochemical characteristics inherent to each substrate significantly influence the microecological environment crucial for potato growth and breeding. This study analyzed environmental factors within each substrate and employed Illumina sequencing alongside bioinformatics tools to examine microbial community structures, their correlation with environmental factors, core microbial functions, and the dynamics of microbial networks across various samples. These included pure coconut peat (CP1) and pure vermiculite (V1), substrates mixed with organic fertilizer for three days (CP2 and V2), and three combinations cultivated with potatoes for 50 days (CP3, V3, and CV3-a 1:1 mix of coconut peat and vermiculite with organic fertilizer). Vermiculite naturally hosts a more diverse microbial community. After mixing with fertilizer and composting for 3 days, and 50 days of potato cultivation, fungal diversity decreased in both substrates. Coconut peat maintains higher bacterial diversity and richness compared to vermiculite, harboring more beneficial bacteria and fungi, resulting in a more complex microbial network. However, vermiculite shows lower bacterial diversity and richness, with an accumulation of pathogenic microorganisms. Among the 11 environmental factors tested, water-soluble nitrogen (WSN), total nitrogen (TN), available potassium (AK), total organic carbon (TOC) and air-filled porosity (AFP) were significantly associated with microbial succession in the substrate.The nutritional type composition and interaction patterns of indigenous microorganisms differ between vermiculite and coconut peat. Adding abundant nutrients significantly affects the stability and interaction of the entire microbial community, even post-potato cultivation. When using vermiculite for soilless cultivation, precise control and adjustment of nutrient addition quantity and frequency are essential.

4.
Microorganisms ; 12(3)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38543636

RESUMO

Vermiculite is a clay mineral with unique physical properties that plays a significant role in plant cultivation, soil remediation, and solid waste management. In this research, we first explored how vermiculite-to-microbe interactions evolved during sludge-waste mushroom residue co-composting. Vermiculite's addition had a substantial impact on the microbial α and ß diversities, significantly changed the microbial community pattern, and strengthened the composting nutrient circulation through the formation of more specialist and generalist species. The microbial community characteristics exhibited common co-networks for resisting composting environment stresses. Vermiculite contributed to enhancing the keystone taxa Proteobacteria and Actinobacteriota and caused the ecological function network to diversify in the warming and maturation phases, with more complexity and tightness in the thermophilic phase (with super-generalist species existing). The enhanced microbial interactions induced by vermiculite possessed a greater capacity to facilitate the metabolisms of carbohydrates and amino acids and cellulolysis, thereby promoting composting humification, and nitrogen retention in the final compost and composting maturity. These findings are helpful for us to understand the biological process mechanisms of the effect of vermiculite additives on composting and contribute to the establishment of a theoretical framework for enhancing the microbial interactions in composting systems by adding vermiculite in practical applications.

5.
Environ Sci Pollut Res Int ; 31(16): 23623-23637, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38418794

RESUMO

The aim of this study was to assess the removal capability of Fe/Al contamination of Indian camphorweed (Pluchea indica; hereafter, P. indica) using different growth substrates (100% sand, gardening soil, vermiculite, and zeolite). In addition, the study aimed at observing the physio-morphological adaptation strategies of P. indica under excess Fe/Al levels in a controlled greenhouse environment. After a 4-week treatment, P. indica plants under excess Fe in the 100% sand substrate exhibited signs of decay and eventually death. In contrast, the growth performances of P. indica under gardening soil substrate remained sustained even when exposed to Fe/Al stress. Under zeolite substrate, Fe in the root tissues was 23.1 and 34.7 mg g-1 DW after 1 and 4 weeks of incubation, respectively. In addition, Al in the root tissues also increased to 1.54 mg g-1 DW after 1 week and 1.59 mg g-1 DW after 4 weeks, when subjected to 20 mM Al treatment. Zeolite was observed to be a promising substrate to regulate the uptake of Fe (3.31 mg plant-1) and Al (0.51 mg plant-1) by the root tissues. The restriction of Fe and Al in the root and a low translocation to the leaf organ was indicated by a low translocation factor (< 1.0). High Fe concentrations in the root and leaf tissues negatively affected root elongation, and the net photosynthetic rate decreased by > 40% compared to positive control. Gas exchange parameters and leaf temperature were found the most sensitive to Fe/Al stress. Moreover, the limited transpiration rate under Fe/Al stress caused an increase of the leaf temperature and crop stress index. The findings suggest that P. indica grown using zeolite substrate may serve as a good model system for constructed wetlands, storing excess Al in the root tissues without any significant growth inhibition.


Assuntos
Asteraceae , Zeolitas , Alumínio , Ferro , Areia , Bioacumulação , Plantas , Solo
6.
Small ; : e2311715, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38396319

RESUMO

Interface modification plays an important role in improving the power conversion efficiency (PCE) of organic solar cells (OSCs). However, the low non-covalent interaction between the cathode interface layer (CIL) and nonfullerene acceptor (NFA) directly affects the charge collection of OSCs. Here, the non-covalent interaction between the CIL and NFA is enhanced by introducing the 2D vermiculite (VML) in the poly(9,9-bis(3'-(N,N-dimethyl)-Nethylammonium-propyl-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)) dibromide (PFN-Br) interface layer to form an efficient electron transport channel. As a result, the electron extraction efficiency from the active layer to the CIL is increased, and the PCE of OSCs based on PBDB-T:ITIC is boosted from 10.87% to 12.89%. In addition, the strategy of CIL doping VML is proven to be universal in different CIL materials, for which the PCE is boosted from 10.21% to 11.57% for OSCs based on PDINN and from 9.82% to 11.27% for OSCs based on PNDIT-F3N. The results provide a viable option for designing efficient CIL for high-performance non-fullerene OSCs, which may promote the commercialization of OSCs.

7.
Molecules ; 29(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38276615

RESUMO

Nitrogen and sulfur co-doped graphene-like carbon nanosheets (CNSs) with a two-dimensional structure are prepared by using methylene blue as a carbon source and expanded vermiculite as a template. After static negative pressure adsorption, high-temperature calcination, and etching in a vacuum oven, they are embedded in the limited space of the vermiculite template. The addition of an appropriate number of mixed elements can improve the performance of a battery. Via scanning electron microscopy, it is found that the prepared nitrogen-sulfur-co-doped carbon nanosheets exhibit a thin yarn shape. The XPS results show that there are four elements of C, N, O, and S in the carbon materials (CNS-600, CNS-700, CNS-800, CNS-900) prepared at different temperatures, and the N atom content shows a gradually decreasing trend. It is mainly doped into a graphene-like network in four ways (graphite nitrogen, pyridine nitrogen, pyrrole nitrogen, and pyridine nitrogen oxide), while the S element shows an increasing trend, mainly in the form of thiophene S and sulfur, which is covalently linked to oxygen. The results show that CNS-700 has a discharge-specific capacity of 460 mAh/g at a current density of 0.1 A/g, and it can still maintain a specific capacity of 200 mAh/g at a current density of 2 A/g. The assembled lithium-ion capacitor has excellent energy density and power density, with a maximum power density of 20,000 W/kg.

8.
Nano Lett ; 24(1): 386-393, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38133588

RESUMO

Phyllosilicates-based nanomaterials, particularly iron-rich vermiculite (VMT), have wide applications in biomedicine. However, the lack of effective methods to activate the functional layer covered by the external inert layer limits their future applications. Herein, we report a mineral phase reconfiguration strategy to prepare novel nanozymes by a molten salt method. The peroxidase-like activity of the VMT reconfiguration nanozyme is 10 times that of VMT, due to the electronic structure change of iron in VMT. Density-functional theory calculations confirmed that the upward shifted d-band center of the VMT reconfiguration nanozyme promoted the adsorption of H2O2 on the active iron sites and significantly elongated the O-O bond lengths. The reconfiguration nanozyme exhibited nearly 100% antibacterial activity toward Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), much higher than that of VMT (E. coli 10%, S. aureus 21%). This work provides new insights for the rational design of efficient bioactive phyllosilicates-based nanozyme.


Assuntos
Escherichia coli , Staphylococcus aureus , Peróxido de Hidrogênio , Silicatos de Alumínio/farmacologia , Ferro , Antibacterianos/farmacologia , Antibacterianos/química
9.
ACS Appl Mater Interfaces ; 15(50): 58734-58745, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38055937

RESUMO

Two-dimensional (2D) nanostructures have the advantages of high specific surface area, easy surface functionalization, abundant active sites, and good compatibility with device integration and can be assembled into three-dimensional structures, which are key to the development of high-performance gas sensors. In this study, 2D vermiculite (VMT) nanosheets and guanine (G), two renewable resources with unique chemical structures, were organically combined to fully use the specificity of their molecular structures and functional activities. Driven by the regulation of 2D VMT nanosheets, guanine/vermiculite (G/VMT)-based 2D nanocomposites with controllable pore structure, multiple binding sites, and unobstructed mass transfer were designed and synthesized. The G/VMT nanocomposite material was used as a quartz crystal microbalance (QCM) electrode-sensitive film material to build a QCM-based humidity sensor. G/VMT-based QCM humidity sensor had good logarithmic linear relation (0.9971), high sensitivity (24.49 Hz/% relative humidity), low hysteresis (1.75% RH), fast response/recovery time (39/6 s), and good stability. Furthermore, with a QCM sensor and a specially designed wireless circuit, a wireless humidity detection system transmitting via Wi-Fi allows real-time monitoring of nut storage. This study presents an environmentally friendly, high-performance, miniature 2D nanocomposite sensor strategy for real-time monitoring.

10.
J Environ Radioact ; 270: 107305, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37857022

RESUMO

Human activities such as mining uranium resources, hydrometallurgy, and nuclear fuel preparation inevitably produce wastewater sludge containing radionuclides, posing a severe threat to the environment around the production site. Natural clay minerals have been widely used in groundwater pollution remediation because of their high cation exchange capacity. Through static batch experiments, the optimal pH range of vermiculite for U(VI) adsorption was 6-8,the maximum adsorption capacity was 1.62 × 10-5 mol g-1. The kinetic adsorption results indicated that the adsorption mode was mainly multilayer non-homogeneous chemisorption. In addition, the adsorption of vermiculite on U(VI) was found to be a heat absorption process according to the thermodynamic model fitting, and the spontaneous reactivity of U(VI) adsorption on vermiculite surface was positively correlated with temperature and negatively correlated with the initial concentration of U(VI). Combined with SEM-EDS and FT-IR results, the adsorption process of vermiculite on U(VI) is mainly an ion exchange and complexation reaction, and U(VI) is removed in the form of ≡ SUOU22+ or ≡ SOUO2OH, etc., by XPS means. The results of this study not only investigated the adsorption behavior and mechanism of natural vermiculite in groundwater contaminated with simulated uranium but also provided theoretical support for its feasibility in remediating uranium-polluted groundwater.


Assuntos
Monitoramento de Radiação , Urânio , Humanos , Urânio/análise , Adsorção , Espectroscopia de Infravermelho com Transformada de Fourier , Termodinâmica , Concentração de Íons de Hidrogênio , Cinética
11.
Materials (Basel) ; 16(18)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37763379

RESUMO

Aiming to promote the application of D-mannitol in the field of phase change thermal storage, obstacles, including low thermal storage efficiency and high supercooling, should be properly disposed of. The adoption of adaptable and low-cost supporting materials to make shape-stable phase change materials (ss-PCMs) affordable is a primary solution to solve the above shortcomings. In this study, high-performance ss-PCM for effective medium-temperature heat storage was prepared using expanded vermiculite as the support for D-mannitol preservation. Among the three candidates that treated the raw vermiculite by dilute acid, calcination, and microwave heating, the calcinated expanded vermiculite (CV) was characterized as the most suitable one. After impregnating D-mannitol into the CV carrier by vacuum, a melting enthalpy of 205.1 J/g and a crystallization enthalpy of 174.1 J/g were achieved by the as-received CV/D-mannitol ss-PCM. Additionally, the supercooling of the ss-PCM was reduced to 45.6 °C. The novel CV/D-mannitol ss-PCM also exhibited excellent reusability and stability. All the findings indicate that the abundant and inexpensive CV exhibited great potential as the supporting material for D-mannitol-based ss-PCMs, which allow effective waste heat recovery and temperature regulation.

12.
ACS Nano ; 17(17): 17245-17253, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37638530

RESUMO

Conducting target ions rapidly while rejecting rival ions efficiently is challenging yet highly demanded for ion separation related applications. Two-dimensional (2D) channels are widely used for ion separation, but highly selective 2D channels generally suffer from a relatively low ionic conductivity. Here we report that the 2D vermiculite channels have a Na+ conductivity higher than bulk and at the same time reject heavy metal ions with a selectivity of a few hundreds. Such performance is attributed to the highly electronegative crystal surface and the extremely narrow channel (0.2 nm high), as also supported by the ab initio molecular dynamics simulation. We demonstrate that the highly selective and conductive sodium channels can be utilized to harvest osmotic power from industrial wastewater, achieving a power density of more than 20 W m-2 while preventing pollution from waste heavy metal ions. This work provides a strategy for wastewater utilization as well as treatment. Moreover, the investigation suggests the possibility to break the ionic permeability-selectivity trade-off by combining Ångstrom-scale confinement with proper surface engineering, which could lead to applications that are challenging for previous materials.

13.
J Colloid Interface Sci ; 652(Pt A): 218-230, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37595439

RESUMO

Design and fabrication of feasible remediation composites for total Cr (Cr(T)) removal is still challenging but urgently required. Herein, eco-friendly expanded vermiculite (VE) is integrated with a photoactive covalent organic framework (COF) polymer, in which photoinduced electrons of surface anchored COF can freely transfer to Cr(VI) for chemical reduction, and layered expanded VE allows ion exchange between resultant Cr(III) cations and interlayered K+, Ca2+, Mg2+, Na+, etc. The Cr(T) removal capacities of the surface-modified VE with important parameters (solution pH value, initial Cr(VI) concentration, etc.) are discussed extensively to understand how to select the best conditions for optimum Cr(T) removal performance. More interestingly, from a circular economy view point, spent Cr-loading VE-based waste can serve as a photocatalyst towards oxidation conversion of ciprofloxacin and NO gas subsequently. Explanations for different effects on physicochemical properties as well as catalytic activities of the reused Cr-loading waste are given. This strategy could provide valuable and promising contribution towards the development of sustainable low-cost mineral materials for Cr(T) removal. These findings also shed new light on the research of recycling spent photocatalyst for resource and reutilization.

14.
J Environ Manage ; 344: 118628, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37536237

RESUMO

Organic and inorganic soil amendments are used to increase crop yields and fertilizer efficiency, as well as to improve the physical and biological properties of soil, increase carbon sequestration, and restore contaminated and saline soils. The present study aimed to evaluate the effect of various zeolite composites mixed with either lignite or leonardite on the biomass production of spring wheat and rapeseed and their root morphology. A pot experiment involved the application of the following treatments: zeolite-carbon, zeolite-vermiculite composites, both mixed with lignite or leonardite, and a control treatment with no amendments. Inorganic composites were applied in a dose of 3% and 6%. The study also included an analysis of the root morphometric parameters and aboveground biomass of spring wheat and rapeseed. The lowest productivity was observed when both crops were not enriched with fertilizers or other amendments, 24.92 g per pot and 29.83 g per pot for spring wheat and rapeseed, respectively. The application of mineral fertilizers in combination with zeolite-carbon composite gave the highest aboveground biomass of spring wheat, 110.11 g per pot. Both zeolite-carbon and zeolite-vermiculite composites modified the morphological parameters of roots, with the control treatment showing the lowest root length and dry matter. Although mineral fertilization was found to have a positive impact root development in relation to untreated control, the treatment amended with zeolite-carbon composite and leonardite exhibited the highest root length and biomass of spring wheat. No other soil amendments improved the properties of rapeseed roots.


Assuntos
Brassica napus , Zeolitas , Solo , Triticum , Biomassa , Fertilizantes/análise , Carbono
15.
Chemosphere ; 339: 139658, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37506892

RESUMO

With the increasingly worldwide concentration of environmental pollution, exploiting cost-effective adsorbents has been a research hotspot. Here we introduce novel "functional connector" amide-containing gemini surfactants (LDAB, LDAPP, LDAMP and LDABP) and apply to modify Na-vermiculite (Na-Vt) for Congo red (CR) removal. Chain amide as the functional connector in the modifier, increases 6.9 times of CR uptake than traditional organo-Vts, which is further enhanced by tunning the functional group of modifier spacers. Superb uptake of CR on organo-Vts reaches 1214.05, 1375.47 and 1449.80 mg/g, and the removal efficiencies achieve 80.94%, 91.70% and 96.65% on LDAB-Vt, LDAPP-Vt and LDAMP-Vt, respectively. Notably, the maximum experimental adsorption capacity of LDAPP-Vt is 1759.64 mg/g. These experimental values are among the highest reported CR adsorbents. A combination experimental and theoretical analysis is conducted to unveil the structure-adsorptivity relationship: (i) Adsorptivity enhancement of organo-Vts is more effectively by regulating functional chains than the functional spacer. (ii) para-substituted aromatic spacers own the best adsorptive configuration and strongest stability for π-π interaction. (iii) π-π interaction provided by isolated aromatic ring is stronger than biphenyl, whose steric hindrance depresses the adsorptivity. Results in this study not only explain a new "functional connector" strategy to Vt-based adsorbents, but also provide a practical designing strategy for organic adsorbents characterized with high uptake capacity.


Assuntos
Vermelho Congo , Poluentes Químicos da Água , Adsorção , Poluentes Químicos da Água/análise , Silicatos de Alumínio , Cinética
16.
Small ; 19(35): e2300338, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37186166

RESUMO

It is crucial to control the ion transport in membranes for various technological applications such as energy storage and conversion. The emerging functional two-dimensional (2D) nanosheets such as graphene oxide and MXenes show great potential for constructing ordered nanochannels, but the assembled membranes suffer from low ion selectivity and stability. Here a class of robust charge-selective membranes with superhigh cation/anion selectivity, which are assembled with monolayer nanosheets of cationic/anionic clays that inherently have permanent and uniform charges on each layer is reported. The transport number of cations/anions of cationic vermiculite nanosheet membranes (VNMs)/anionic Co-Al layered double hydroxide (CoAl-LDH) nanosheet membranes is over 0.90 in different NaCl concentration gradients, outperforming all the reported ion-selective membranes. Importantly, this excellent ion selectivity can persist at high-concentration salt solutions, under acidic and alkaline conditions, and for a wide range of ions of different sizes and charges. By coupling a pair of cation-selective vermiculite membrane and anion-selective CoAl-LDH membrane, a reverse electrodialysis device which shows an output power density of 0.7 W m-2 and energy conversion efficiency of 45.5% is constructed. This work provides a new strategy to rationally design high-performance ion-selective membranes by using 2D nanosheets with inherent surface charges for controllable ion-transport applications.

17.
Polymers (Basel) ; 15(10)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37242917

RESUMO

In this work, a novel composite of bacterial cellulose (BC) and expanded vermiculite (EVMT) composite was used to adsorb dyes and antibiotics. The pure BC and BC/EVMT composite were characterized using SEM, FTIR, XRD, XPS and TGA. The BC/EVMT composite exhibited a microporous structure, providing abundant adsorption sites for target pollutants. The adsorption performance of the BC/EVMT composite was investigated for the removal of methylene blue (MB) and sulfanilamide (SA) from an aqueous solution. The adsorption capacity of BC/ENVMT for MB increased with increasing pH, while the adsorption capacity for SA decreased with increasing pH. The equilibrium data were analyzed using the Langmuir and Freundlich isotherms. As a result, the adsorption of MB and SA by the BC/EVMT composite was found to follow the Langmuir isotherm well, indicating a monolayer adsorption process on a homogeneous surface. The maximum adsorption capacity of the BC/EVMT composite was found to be 92.16 mg/g for MB and 71.53 mg/g for SA, respectively. The adsorption kinetics of both MB and SA on the BC/EVMT composite showed significant characteristics of a pseudo-second-order model. Considering the low cost and high efficiency of BC/EVMT, it is expected to be a promising adsorbent for the removal of dyes and antibiotics from wastewater. Thus, it can serve as a valuable tool in sewage treatment to improve water quality and reduce environmental pollution.

18.
Sci Bull (Beijing) ; 68(12): 1283-1294, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37258378

RESUMO

Metallic Zn represents as a primary choice in fabricating various aqueous Zn-ion batteries (ZIBs), however challenging issues including dendrite growth and parasitic reactions at the anode/electrolyte interface, considerably hamper its practical implementation in large-scale energy storage. Herein, we report a low-cost multifunctional ion rectifier (IRT) as an artificial intermediate to reform Zn anode, which can practically eliminate the above issues. The hydrophobic shell (polyvinylidene difluoride) can suppress Zn interfacial corrosion with an inhibition efficiency of 94.8% by repelling water molecules from the bulk electrolyte. Additionally, negatively-charged ion channels inside the zincophilic core (ultrathin vermiculite sheets) induce de-solvating redistribution effect on Zn2+ ions flux, enabling a high ions transference number (0.79) for dendrite-free Zn deposition. This leads to exceptional Zn/Zn2+ reversibility in metallic Zn with IRT stabilization. The remarkable Coulombic efficiency (99.8%, 2000 cycles) for asymmetrical batteries, and a long lifespan (1600 h) with ultrahigh cumulative capacity of 2400 mAh cm-2 for symmetrical batteries, are successfully achieved. More encouragingly, the Zn//NH4V4O10 pouch cell retains 94.3% of its original capacity after 150 cycles at 1 A g-1. We believe that this low-cost and high-efficiency tactic could pave a promising path for anode surface modification.

19.
Int J Biol Macromol ; 241: 124542, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37086768

RESUMO

Cerium is an essential element for several applications in industry, therefore, recovering it from secondary sources is a promising strategy from an economic and environmental perspective. For this purpose, biosorption is a low-cost and effective alternative. The present work evaluated the recovery of Ce3+ from aqueous solutions using alginate/vermiculite-based particles (ALEV) functionalized by ionic imprinting. From the kinetic assays, it was verified that the uptake of Ce3+ followed the pseudo-second-order model and was mainly controlled by external diffusion. The Langmuir model better described the equilibrium data, and a maximum biosorption capacity of 0.671 mmol/g at 45 °C was attained. The evaluation of the thermodynamic quantities revealed that the process occurs spontaneously and endothermically. The particles reuse and Ce3+ recovery were achieved using 0.1 mol/L HCl or 1.0 mol/L CaCl2 solutions for up to four cycles of biosorption/desorption. The biosorbent was characterized before and posted Ce3+ biosorption to investigate the morphology, textural properties, crystallinity, thermal resistance, composition, and functional groups of the biosorbent.


Assuntos
Alginatos , Poluentes Químicos da Água , Cinética , Termodinâmica , Física , Íons , Adsorção , Concentração de Íons de Hidrogênio
20.
Biomaterials ; 295: 122031, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36731367

RESUMO

This study reports an ultrasound-mediated and two-dimensional (2D) porous vermiculite nanosheets (VMT NSs)-based nanocatalyst platform (Arg@VMT@PDA-PEG) that synergistically harnessed the Fenton reaction-based chemodynamic therapy (CDT), 2D semiconductor-based sonodynamic therapy (SDT) and nitric oxide (NO)-based gas therapy for combination cancer therapy. The tumor microenvironment responsive degradation of polydopamine (PDA) shell could not only prevent L-Arg, a NO donor, leakage during blood circulation, but also selectively release the active sites of VMT NSs for catalytic reactions in tumor cells. Additionally, the Fenton reactions mediated by the abundant Fe2+/Fe3+ in VMT NSs could efficiently produce ·OH and consume glutathione (GSH) for CDT. Moreover, the reactive oxygen species (ROS, ·OH and ·O2-) produced by ultrasound-triggered Arg@VMT@PDA-PEG could not only execute SDT but also oxidize L-Arg to NO for synergetic gas therapy. The results show that the transformation of ROS to NO can enhance curative efficacy owing to the ability of NO with much longer life-time in freely diffusing into cells from intercellular space. This biodegradable Arg@VMT@PDA-PEG nanocatalytic platform integrating three different catalytic reactions provides a new therapeutic paradigm for combination cancer therapy.


Assuntos
Arginina , Neoplasias , Humanos , Porosidade , Espécies Reativas de Oxigênio , Terapia Combinada , Glutationa , Óxido Nítrico , Linhagem Celular Tumoral , Microambiente Tumoral , Peróxido de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...